
Reinforcement Learning for Mini Tetris
Max Conway

University of Colorado Boulder
Computer Science

Max.Conway@colorado.edu

Gyanig Kumar
University of Colorado Boulder

Computer Science
Gyanig.Kumar@colorado.edu

Abstract—Tetris is a famous game created in 1985 by Alexey
Pajitnov is one of the best-selling games of all time. In this
paper, we train a reinforcement learning agent to play Tetris.
We examine previous attempts to train an agent to play Tetris
and analyze the challenges in reinforcement learning that make
training to play Tetris particularly difficult. Finally, we train a
Proximal Policy Optimization (PPO) and Deep Q Network (DQN)
model on a smaller game of Tetris with fewer and simpler pieces
to moderate success using the Torchrl library. We investigated
the impact of the models architecture by benchmarking their
performance on Convolutional Neural Network(CNN) and Fully-
connected ANN. Interestingly, PPO outperforms DQN across
both architectures. We conclude with a discussion of challenges
and future works. The code for the project can be found here
https://github.com/mconway2579/TetrisRL

I. INTRODUCTION

Tetris was created in 1985 by Alexey Pajitnov. As one
of the top-selling games ever, it is well-known and easily
recognizable. You would be challenged to find someone who
has never heard of or seen Tetris before. Tetris is a simple
game conceptually, in which the player rotates and positions
falling pieces (tetrominoes) to form complete horizontal lines,
which are then cleared. The game ends when the height of the
stack of pieces reaches the top of the board.

Tetris is a challenging reinforcement learning (RL) problem
because it contains several quirks that challenge RL algo-
rithms. Tetris challenges reinforcement learning algorithms
with sparse reward, reward is infrequent and requires many
”good moves” to clear a line, exploration for a reward, a
line will almost never be cleared by a random agent, and
credit assignment, when a line is cleared, it is unclear to
the model what sequence of moves led to the reward. These
factors combine to make Tetris a challenge for even modern
RL algorithms without significant engineering effort.

To mitigate these challenges, the most common and suc-
cessful approach is to engineer away the direct piece control
[1], [5]. Instead of allowing the model to input raw commands
(left, right, rotate, down, no-op) these approaches will get a
value estimate from the model of all possible places the current
piece can be placed and then handle control in the backend to
place the piece in the configuration the model determined to
have the highest value. These methods result in superhuman
performance, but we feel they miss the point since a core
challenge of the game for human players is controlling the
piece to do what they intend.

By using RL for Tetris, we can gain insight into how
RL solves (or doesn’t) long-horizon problems, sparse re-
ward problems, and large state spaces. Here we will review
reinforcement learning concepts used in our approach and
other attempts to solve Tetris with reinforcement learning,
the TorchRL framework, formalize our problem and approach,
present our results, discuss future improvements for this sys-
tem.

II. BACKGROUND AND RELATED WORK

A. Reinforcement Learning for Games

One of the most influential reinforcement learning papers
is Playing Atari with Deep Reinforcement Learning [7] This
research introduces the Deep Q Network (DQN). Before this
paper, tabular Q learning was a popular reinforcement learning
method, but tabular Q learning requires O(|S| × |A|) space
since for every state action pair a value must be stored.
Whereas, Deep Q learning instead learns a network function
f that consumes a state and produces a vector of Q values of
length |A| for discrete action spaces f : S → R|A|. f is learned
by minimizing the Q loss via gradient descent.

L(f(s)a) = (f(s)a − (R(s, a) +maxa′∈A(f(s
′)a′))2

Many improvements have been made to the initial DQN
paper, including a Double Deep Q Network [12], which
improves training stability by training two separate Q net-
works, one for acting and another for Q value estimation.
Another improvement to the initial DQN paper is the use
of prioritized replay buffers [9]. The prioritized replay buffer
allows networks to train on samples they are performing
worse on, rather than training on samples the network already
accurately predicts.

Proximal Policy Optimization Algorithms [10] have
emerged as a competitor to DQN; these methods optimize
a surrogate objective that constrains the policy update by
limiting the change in the probability ratio between the new
and old policies to achieve stable and efficient on-policy
learning.

https://github.com/mconway2579/TetrisRL

The PPO network is learned by minimizing the loss

LPPO(θ) = −Et

[
min

(
rt(θ) Ât, clip(rt(θ), 1−ϵ, 1+ϵ) Ât

)]
+

c1 Et

[
(Vθ(st)−Rt)

2
]
− c2 Et

[
H
(
πθ(· | st)

)]
,

When
• θ are the parameters of the network(s)
• rt(θ) =

πθ(at|st)
πθold

(at|st) is the probability ratio

• Ât is the advantage estimate.
• ϵ is the clip-threshold.
• c1 and c2 are the value-loss and entropy weights.
• H is the policy entropy.
• Vθ is the value network
• Rt is the discounted future return that Vθ is trying to

learn

B. TorchRL

TorchRL [2] is an extension built on top of the pytorch
[8] deep learning framework. TorchRL provides implemen-
tations for many key components of deep reinforcement
learning, including Policy Rollouts, Environment Wrappers &
Transforms, Data Collectors, Replay Buffers, Prioritized and
Uniform Samplers, Network layers and implementations, and
objective function implementations like DDQN, PPO.

TorchRL connects all of these components through an
optimized data structure called the tensordict. The tensordict
works like a Python dictionary, except it can be indexed by
keys or dimensions like a standard tensor. It also supports
GPU computations and backpropagation through tensordict
operations. The tensordict is the backbone of TorchRL, and
many modules consume, produce, or modify tensordicts.

C. Tetris Reinforcment Learning

Tetris is an interesting reinforcement learning problem for
several reasons, most notably credit assignment, exploration,
and sparse reward. In Tetris, a reward is received when a line
is cleared, which will almost never happen with a random
agent, making exploring to find a reward challenging. Even
if your model does clear a line, a credit assignment becomes
a problem, because it was not just the previous action that
cleared a line, but actions many time steps away could also
be equally responsible for clearing that line.

Many efforts have been made to make Tetris learning easier.
One notable effort used a custom reward function [11]:

(−0.51 ·Height+0.76 ·Lines−0.36 ·Holes−0.18 ·Bumpiness)

where Height is the highest block, lines are any lines cleared
that frame, holes are the number of empty cells with a
filled cell above them, and bumpiness is the sum of height
differences across each column.

Superhuman Tetris agents have been achieved with a clever
trick. Instead of teaching the model to relay input commands
like humans, the superhuman agents are trained by learning
a state value network. For the current piece, the environment

generates all possible placements for the piece, and the net-
work obtains its value estimate; then, the environment handles
the actual controlling of the piece to position the piece in the
highest value placement as determined by the network.

A Tetris reinforcement Learning researcher motivated this
approach by saying, ”When a human is playing Tetris, it is
trivial to consider how to move a piece to a certain location;
instead, we consider where we should move it. Hence, it is
better to provide all possible locations the current piece can
drop at, and let the AI choose the best one.” [5] We reject
this claim since input errors are a common source of mistakes
for Tetris players. If the claim is that these agents are playing
Tetris, they should risk input errors just as any other player
would.

Tetris from raw inputs remains a challenge for reinforcement
learning. In a survey of Tetris Reinforcement learning from
2019 [1], they conclude, ”No deep learning algorithm has
learned to play well from raw inputs.” Tetris is notably
missing from many common Atari benchmarks. Both [3], [4]
evaluate their proposed methods on many Atari Games, but
interestingly enough, do not evaluate on Tetris.

Some work has been successful on a smaller version of
Tetris [6] trained a Q table for a small version of Tetris with
smaller pieces and a smaller game board. We draw inspiration
from this work by reducing our environment from regular
Tetris to mini Tetris.

III. PROBLEM FORMULATION & SOLUTION APPROACH

We formulate our problem as MDP (S,A, T,R, γ) with:

S = {0, 1}H×W×3.

Fig. 1: Visualization of state

S is the set of all height by width by 3 boolean tensors where
the first channel contains activations for the current moving
piece, the second channel includes activations for all the placed

pieces, and the third channel contains activations for all the
empty cells. The size of this state space is 2H×W×3, meaning
that traditional MDP solvers like value iteration are out of the
question for even small boards.

A = {Left,Right,Down, Turn}

Left and right move the current piece in the respective direc-
tions, down accelerates the piece’s descent, and turning rotates
the piece 90 degrees clockwise.

Transitions are deterministic, moving in units of 1 cell for an
action direction and rotating 90 degrees for the rotate action.
For the reward function, we took inspiration from [11] and
used a custom reward function:

R(S) = c1 lines2 +
c2

holes + 1
+

c3
height + 1

(1)

+
c4

bumpiness + 1
+ c5

(∑
i rowi

board width

)c6

(2)

+ c7 gameover (3)

The most significant difference between our reward function
and the reward function in [11] is that we only send a
negative reward for a game over. Instead of punishing fre-
quent occurrences of bad state attributes like height, holes,
and bumpiness, we instead reward infrequent occurrences of
bad state attributes by multiplying a positive reward against:
(bad attribute+ 1)

−1. The reason for doing this is with too
many negative rewards the model learns to end the game as
fast as possible. Additionally, to incentivize filling in rows,
we add a reward term with a positive reward that scales with
more partially filled rows.

Finally, we use a discount term:

γ = 0.99

To maximally weigh the importance of future states.
Unlike in normal Tetris, when the pieces are famously the

O, I, S, Z, L, J, and T pieces we use the pieces from [6] in
what we call mini Tetris.

(a) Original Tetris Pieces (b) Mini Tetris Pieces

IV. RESULTS

We run one experiment in which we train four models for
4, 194, 304 steps on a board that is 10 cells wide and 20 cells
tall with the mini Tetris piece set. Each collector run collects
512 steps at time, our replay buffer holds 4096 steps and is
sampled from using the temporal difference error as a priority,
we use a learning rate of 1 ∗ 10−4, a mini batch size of 32,

and a learning intensity of 32∗5
512 = 0.31. Every 5120 steps

we evaluate the model by running 5 1000 step roll-outs and
collect metrics on average reward, cumulative reward, number
of steps, and lines cleared. We save the best performing model
for each of these metrics and run a final evaluation where
models are scored by the number of lines cleared in 32 1000
step rollouts.

We use the reward function

R(S) = 10 lines2+
2

holes + 1
+

5

height + 1
+

2

bumpiness + 1

+ 10

(∑
i rowi

board width

)4

− 100 gameover (4)

All of these coefficients were found heuristically and certainly
can be improved upon.

We evaluate 2 model architectures with PPO and DDQN.
The first architecture is a convolutional neural network in
which the state image S = {0, 1}20×10×3 is first convolved
by 32 3 × 3 kernels and then convolved again by 64 3 × 3
kernels, before the output is flattened and passed through
a series of 3 hidden layers with dimension 512 before a
final output layer outputs values for each of our four actions.
The second model architecture is a standard artificial neural
network in which we directly flatten the state image into a
vector S = {0, 1}600 before passing the the state vector to
3 hidden layers with dimension 512 before a final output
layer outputs values for each of our four actions. The reason
for selecting these architectures is to compare a direct rep-
resentation, the flattened state, with a learned representation,
the convolution output, for decision making for mini Tetris.
The results of the experiment can be seen in the table below:

Training & Architecture Lines Cleared
DDQN CNN 3
DDQN ANN 1

PPO CNN 7
PPO ANN 5

We also visualize the average reward per evaluation step in
the figure below:

(a) DDQN ANN (b) DDQN CNN

(c) PPO ANN (d) PPO CNN

Fig. 3: Average Reward at each evaluation step for each model

From the graphs of average reward, it is evident that both
stability and random reward pose challenges for our models.
Additionally, from the table it is clear that the CNN models
outperform their respective ANN models and the PPO models
outperform their respective DDQN models. This is a surprising
result, we initially tested the ANNs because we hypothesized
a CNN on a normal Tetris display would need learn to ”see”
the state of each cell requiring more training time. This was
not the case, however, as the CNN outperforms the ANN,
indicating that the CNN must be learning to extract features
beyond individual cell states. One possible explanation for this
observation would be that the CNN, using 3 × 3 kernels, is
spatially biased to learning relationships between neighboring
nodes whereas the ANN contains no spatial bias making learn-
ing spacial relationships during training much more difficult.
Another observation would be worth noting that the CNNs
appear to be much more unstable than ANNs for learning
Tetris likely because they are learning feature extraction that
later dense layers must use.

V. CONCLUSION & FUTURE WORK

This project was a moderate success because of the chal-
lenges with credit assignment sparse reward, and exploration
learning to play Tetris from raw inputs is very difficult because
of the challenges with credit assignment, sparse reward, and
exploration learning to play Tetris from raw inputs is very
difficult. Although, we ultimately achieved our goal of learning
how to use TorchRL. By down-scaling from Tetris to Mini
Tetris, we are able to train a model that clears a couple
of lines before losing the game. We are constrained by

both time and compute to push this implementation to its
limits. Further research would include ablation studies of our
reward function to really understand what each component
is contributing and delve into the reward coefficients c1...c7.
Further research would also train larger networks with more
advanced reinforcement learning techniques as well as per-
form a hyperparameter search instead of guessing reasonable
hyperparameters. We believe a system that performs well on
mini Tetris would perform well on regular Tetris, given enough
training time and computing power.

One collected graph particularly sheds light onto our com-
pute bottleneck. We can see the max step from each collection
epoch and observe that all models except the DDQN ANN
eventually terminate the episode by truncation, not by ending
the game, we theorize that this leads to poor performance
in late game states since they are under represented during
training.

(a) DDQN ANN (b) DDQN CNN

(c) PPO ANN (d) PPO CNN

Fig. 4: Number of steps per episode

With more compute and time we would not have to truncate
episodes and allow our models to learn more about playing in
a late game.

In order to learn effective board representations, it could be
useful to learn an auto encoder for boards in which a UNet or
vanilla auto encoder could learn a latent space in which the
board can be fully recovered. Another novel approach would
be to learn an image and action auto encoder together so when
the embeddings for the action and image are added together
and the resulting vector is decoded the next board is produced.
This learned embedding would likely work very well as a
state representation as it would represent the current board

and encode the possible future boards all in one vector. Finally,
compute could be more effectively used training could likely
be speed up by making use of torchrl’s multi-process collectors
and trainers instead of training on a single process and GPU.

VI. CONTRIBUTIONS AND RELEASE

Max Conway built the infrastructure and pluming that
organized the project, created the network architectures, data
collectors, and replay buffers, as well as vibe coded the
environment with GPTo3, and wrote the PPO training loop.
Gyanig Kumar wrote the DQN training loop and researched
the TorchRL provided objects. Both authors worked on the
writeup.

The authors grant permission for this report to be posted
publicly.

REFERENCES

[1] Simón Algorta and Özgür Şimşek. The game of tetris in machine
learning, 2019.

[2] Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun
Sodhani, Xiaomeng Yang, Gianni De Fabritiis, and Vincent Moens.
Torchrl: A data-driven decision-making library for pytorch, 2023.

[3] Jiajun Fan. A review for deep reinforcement learning in
atari:benchmarks, challenges, and solutions, 2023.

[4] Jiajun Fan, Yuzheng Zhuang, Yuecheng Liu, Jianye Hao, Bin Wang,
Jiangcheng Zhu, Hao Wang, and Shu-Tao Xia. Learnable behavior con-
trol: Breaking atari human world records via sample-efficient behavior
selection, 2023.

[5] Rex L. Reinforcement learning on tetris. https://rex-l.medium.com/
reinforcement-learning-on-tetris-707f75716c37, June 2021. Medium; 9
min read. Accessed: May 2, 2025.

[6] S. Melax. Reinforcement learning tetris example. https://www.melax.
com/tetris/tetris.html. Accessed: May 2, 2025.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing
atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library, 2019.

[9] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Priori-
tized experience replay, 2016.

[10] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms, 2017.

[11] Matt Stevens and Sabeek Pradhan. Playing tetris with deep reinforce-
ment learning. Course project report, Stanford University, CS231n
Course Reports, 2016. Accessed: May 2, 2025.

[12] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning, 2015.

https://rex-l.medium.com/reinforcement-learning-on-tetris-707f75716c37
https://rex-l.medium.com/reinforcement-learning-on-tetris-707f75716c37
https://www.melax.com/tetris/tetris.html
https://www.melax.com/tetris/tetris.html

	Introduction
	Background and Related Work
	Reinforcement Learning for Games
	TorchRL
	Tetris Reinforcment Learning

	Problem Formulation & Solution Approach
	Results
	Conclusion & Future Work
	Contributions and Release
	References

