
Generative AI
Gyanig Kumar

Research Assistant

Use-Case Example in a Typical Computer Vision Domain –
Object Detection in Advanced Manufacturing Setup

Part I
Introduction to GAN

Introduction
• Generative adversarial networks (GANs) or Generative AI

are an exciting recent innovation in machine learning.

• GANs are generative models:

• Create new data instances that resemble your training
data.

• Achieve this level of realism by pairing a generator and
with a discriminator

Fig. Images generated by a GAN (Source: NVIDIA)

https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf

Background:
What is

Generative
Model?

• Supervised vs. Unsupervised Learning

• Examples of supervised learning problems
include classification and regression, and
examples of supervised learning algorithms
include logistic regression and random forest.

• Examples of unsupervised learning
problems include clustering and
generative modeling, and examples of
unsupervised learning algorithms are K-
means and Generative Adversarial
Networks.

• More formally, given a set of data
instances X and a set of labels Y:

• Generative models capture the joint
probability p(X, Y), or just p(X) if there
are no labels.

• Discriminative models capture the
conditional probability p(Y | X).

Generative Models Are Hard

Overview of GAN
Structure

• [training] drives the discriminator to attempt to learn to correctly classify samples as real or fake.

• Simultaneously, the generator attempts to fool the classifier into believing its samples are real.

• At convergence, the generator’s samples are indistinguishable from real data, and the discriminator outputs
1/2 everywhere.

• The discriminator may then be discarded.

Discriminator

• Discriminator's training data comes from two sources:

• Real data instances, such as real pictures of people.

• Fake data instances created by the generator.

• During discriminator training:

• The discriminator classifies both real data and fake data from
the generator.

• The discriminator loss penalizes the discriminator for
misclassifying a real instance as fake or a fake instance as
real.

• The discriminator updates its weights
through backpropagation from the discriminator loss through
the discriminator network.

Discriminator can use any network architecture appropriate to the type of data it's classifying

https://developers.google.com/machine-learning/glossary/#b

Generator

The portion of the GAN that trains the generator includes:

• random input

• generator network, which transforms the random input into a
data instance

• discriminator network, which classifies the generated data

• discriminator output

• generator loss, which penalizes the generator for failing to
fool the discriminator

Random input is:

• In its most basic form, a GAN takes random noise as its input

• Choose something that's easy to sample from, like a uniform distribution

Generating Random Variables

Computers are fundamentally deterministic

it is possible to define algorithms that generate sequences of numbers whose
properties are very close to the properties of theoretical random numbers
sequences

Methods: inverse transform method, rejection sampling, Metropolis-Hasting
algorithm and others

Generating Random Variables

inverse transform method

• way to generate a random variable that follows a given distribution by making a uniform random variable goes through a
well designed “transform function” (inverse CDF)

Illustration of the inverse transform method. In blue: the uniform distribution over [0,1]. In orange: the standard
gaussian distribution. In grey: the mapping from the uniform to the gaussian distribution (inverse CDF).

Use the
Discriminator to
train Generator

• Sample random noise.

• Produce generator output from
sampled random noise.

• Get discriminator "Real" or "Fake"
classification for generator output.

• Calculate loss from discriminator
classification.

• Backpropagate through both the
discriminator and generator to obtain
gradients.

• Use gradients to change only the
generator weights.

Generative
model
approximation

• finding the transform function is not as straightforward

• complex function naturally implies neural network modelling

• model the transform function by a neural network

• input : simple N dimensional uniform random variable

• output : another N dimensional random variable that should follow
complex probability distribution corresponding to desired output

Training GAN

• GANs must juggle two different kinds of training (generator and discriminator)

• GAN convergence is hard to identify

Alternate Training

• The discriminator trains for one or more epochs

• The generator trains for one or more epochs

• Repeat steps 1 and 2 to continue to train the generator and discriminator
networks

Convergence

• As the generator improves with training, the discriminator performance gets
worse

• This progression poses a problem

• Discriminator feedback gets less meaningful over time

Loss Functions

minimax loss

𝐸𝑥[log(𝐷(𝑥))] + 𝐸𝑧[log(1 − 𝐷(𝐺(𝑧))]

𝑫(𝒙) : discriminator's estimate of the probability that real data instance x is real

𝑬𝒙 : expected value over all real data instances

𝑮(𝒛): generator's output when given noise z

𝑫(𝑮(𝒛)): discriminator's estimate of the probability that a fake instance is real

𝑬𝒛: expected value over all generated fake instances G(z)

Cont..

Generator can't directly affect the log(D(x))

• minimax loss function can cause the GAN to get stuck in the early stages

• modify the generator loss so that the generator tries to maximize log D(G(z))

Loss Functions

Wasserstein loss (WGAN discriminator is actually called a "critic" instead of a "discriminator")

𝐂𝐫𝐢𝐭𝐢𝐜 𝐋𝐨𝐬𝐬: 𝐷(𝑥) − 𝐷(𝐺(𝑧))

• discriminator tries to maximize the difference between its output on real instances and its output on fake instances.

Generator Loss: D(G(z))

• generator tries to maximize the discriminator's output for its fake instances.

In these functions:

• D(x) is the critic's output for a real instance.

• G(z) is the generator's output when given noise z.

• D(G(z)) is the critic's output for a fake instance.

• The output of critic D does not have to be between 1 and 0.

The approximation: GAN

Two networks can then be trained jointly (at the same
time) with opposite goals:

• the goal of the generator is to fool the discriminator, so
the generative neural network is trained to maximise
the final classification error (between true and
generated data)

• the goal of the discriminator is to detect fake generated
data, so the discriminative neural network is trained to
minimise the final classification error

• These opposite goals and the implied notion of adversarial training

• From a game theory point of view, we can think of this setting as a minimax two-players game

Direct method

Comparing two probability distributions based on samples

• Maximum Mean Discrepancy (MMD) approach

• defines a distance between two probability
distributions

GMN optimize the network by

• generate some uniform inputs

• make these inputs go through the network and collect the
generated outputs

• compare the true distribution and the generated one based
on the available samples

• use backpropagation to make one step of gradient descent
to lower the distance (for example MMD) between true and
generated distributions

The “indirect” training method

downstream task of GANs is a
discrimination task between true and
generated samples [Discriminator]

If the two distributions are far apart,
the discriminator will be able to
classify easily

Intuition for the adversarial method. The blue distribution is the true
one, the orange is the generated one. In grey, with corresponding y-axis
on the right, we displayed the probability to be true for the
discriminator if it chooses the class with the higher density in each
point (assuming “true” and “generated” data are in equal proportions).
The closer the two distributions are, the more often the discriminator is
wrong. When training, the goal is to “move the green area” (generated
distribution is too high) towards the red area (generated distribution is
too low).

Type of GANs

• Progressive GAN (Progressive Growing of GANs for Improved

Quality, Stability, and Variation)

• generator's first layers produce very low-
resolution images, and subsequent layers add
details

• Training is quicker

• Produce higher resolution images

• Conditional GAN (Conditional Generative Adversarial Nets)

• train on a labeled data set and let you specify the
label for each generated instance

• a conditional MNIST GAN would let you specify
which digit the GAN should generate

• Instead of modeling the joint probability P(X, Y),
conditional GANs model the conditional
probability P(X | Y)

Type of GANs

• Image-to-Image Translation (Image-to-Image Translation

with Conditional Adversarial Networks)

• take an image as input and map it to a generated
output image with different properties

• take sketches of objects and turn them into
photorealistic images of that object

• CycleGAN (Unpaired Image-to-Image Translation using Cycle-

Consistent Adversarial Networks)

• transform images from one set into images that
could plausibly belong to another set

• training data for the CycleGAN is simply two sets
of images

• requires no labels or pairwise correspondences
between images

Type of GANs

• Text-to-Image Synthesis (StackGAN: Text to Photo-realistic

Image Synthesis with Stacked Generative Adversarial Networks)

• take text as input and produce images that are
plausible and described by the text

• take sketches of objects and turn them into
photorealistic images of that object

• Super-resolution (Photo-Realistic Single Image Super-

Resolution Using a Generative Adversarial Network)

• increase the resolution of images, adding detail
where necessary to fill in blurry areas

Part II
Synthetic Data

Use-Case Example in a Typical Computer Vision Domain –
Object Detection in Advanced Manufacturing Setup

Generation of Synthetic Data

The Use-Cases of GANs

▪ Virtual Environments

▪ Style Transfer

▪ Object Detection

▪ 3D Object Generation

▪ Data Imbalance Correction

▪ Image Augmentation

CycleGAN

Figure. Overview of CycleGAN architecture: Translating from satellite image to map routes domain

X

G

Y

𝑫𝒀

X
F

𝑫𝑿

Examples

Cycle Consistency Loss

Objective

Training Dataset

3D Printed Specimen Replica (Class A) Metal Specimen (Class B)

Results of CycleGAN

Class A to Class B (Success)

reference generated

Results of CycleGAN

Class A to Class B (Failures)

The model seems to not work properly with white background where there is not sufficient

contrast between the 3D specimen and the background (left) and in environments with high

light intensities causing the objects to have a shiny surface while capturing images, due to

which the model is not able replicate the expected texture and color for the generated object

even though the generated shape matches (right).

reference generated

Thank You.

By Gyanig Kumar

Research Assistant, I3D Lab, IISc

	Slide 1: Generative AI
	Slide 2: Use-Case Example in a Typical Computer Vision Domain – Object Detection in Advanced Manufacturing Setup
	Slide 3: Part I Introduction to GAN
	Slide 4: Introduction
	Slide 5: Background: What is Generative Model?
	Slide 7: Overview of GAN Structure
	Slide 8
	Slide 9: Discriminator
	Slide 10: Generator
	Slide 11: Generating Random Variables
	Slide 12: Generating Random Variables
	Slide 13: Use the Discriminator to train Generator
	Slide 14: Generative model approximation
	Slide 15: Training GAN
	Slide 16: Loss Functions
	Slide 17: Loss Functions
	Slide 18: The approximation: GAN
	Slide 19: Direct method
	Slide 20: The “indirect” training method
	Slide 21: Type of GANs
	Slide 22: Type of GANs
	Slide 23: Type of GANs
	Slide 24: Part II Synthetic Data
	Slide 25: Use-Case Example in a Typical Computer Vision Domain – Object Detection in Advanced Manufacturing Setup
	Slide 26: Generation of Synthetic Data
	Slide 27: CycleGAN
	Slide 28: Examples
	Slide 29: Cycle Consistency Loss
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Thank You.

