4 @ Intelligent Inclusive

Interaction Design (I°D) Lab

Generative Al

Gyanig Kumar

Research Assistant

‘:;$V¢;:=' i H H
“0): @ Intelligent Inclusive
a2 Interaction Design (I°D) Lab

Use-Case Example in a Typical Computer Vision Domain —
Object Detection in Advanced Manufacturing Setup

Playback Speed: 1.5X

MO O predicted each andjevery object
positiontwith respect tefmarker.

Fay o~ : :
& @ Intelligent Inclusive
=== _/ Interaction Design (I°D) Lab

Part |
Introduction to GAN

@ Intelligent Inclusive
Interaction Design (I°D) Lab

« Generative adversarial networks (GANs) or Generative Al
are an exciting recent innovation in machine learning.

| nt rOd u Ct | on » GANSs are generative models:

» Create new data instances that resemble your training
data.

« Achieve this level of realism by pairing a generator and
with a discriminator

Fig. Images generated by a GAN (source: NviDIA)

https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf

40 @ Intelligent Inclusive
=t N\ Interaction Design (I°D) Lab

Background:
What is
Generative
Model?

Generative Models Are Hard

Supervised vs. Unsupervised Learning

Examples of supervised learning problems
include classification and regression, and
examples of supervised learning algorithms
include logistic regression and random forest.

Examples of unsupervised learning
problems include clustering and
generative modeling, and examples of
unsupervised learning algorithms are K-
means and Generative Adversarial
Networks.

More formally, given a set of data
instances X and a set of labels V:

 Generative models capture the joint
probability p(X, Y), or just p(X) if there
are no labels.

 Discriminative models capture the
conditional probability p(Y | X).

_':'} @ Intelligent Inclusive
2 Interaction Design (I°D) Lab

. .
Ove rVIew Of GAN . . - Generator learns to generate

plausible data. The generated

St r u Ct u re instances become negative
training examples for the
discriminator.

 Discriminator learns to
distinguish the generator's fake
data from real data. The
discriminator penalizes the
generator for producing
implausible results.

Real images »| Sample

Discriminator

» Generator output is connected
directly to the discriminator
input.

SS0|
Jojeuiwasiqg

s50|
Jojesausn)

— Generator | | Sample

Random input

[training] drives the discriminator to attempt to learn to correctly classify samples as real or fake.

Simultaneously, the generator attempts to fool the classifier into believing its samples are real.

At convergence, the generator’s samples are indistinguishable from real data, and the discriminator outputs

1/2 everywhere.

The discriminator may then be discarded.

Random Input
Vector

|

Generator
Model

Input Example 1

Discriminator
Model

r

Generated
Example

Binary Classification
Real/Fake

Vector

Random Input

Generator
Model

Generated
Example

‘ Real Example

\/

| Update
1 model

Discriminator
Model

_| Binary Classification

Real/Fake

@ Intelligent Inclusive
Interaction Design (I°D) Lab

Discriminator

¢=====m Backpropagation . . . i . .
 Discriminator's training data comes from two sources:

« Real data instances, such as real pictures of people.
« Fake data instances created by the generator.

Sample Discriminator

Y

Real images

$S0]
Jojeulwiasiq

 During discriminator training:

« The discriminator classifies both real data and fake data from
the generator.

The discriminator loss penalizes the discriminator for
misclassifying a real instance as fake or a fake instance as
real.

« The discriminator updates its weights
through backpropagation from the discriminator loss through
the discriminator network.

— Generator I — Sample

§S0|
lojeiauasg)
[}

Random input

Discriminator can use any network architecture appropriate to the type of data it's classifying

https://developers.google.com/machine-learning/glossary/#b

S

S ‘
LI

@ Intelligent Inclusive
Interaction Design (I°D) Lab

&>
4

Generator

. . . o

The portion of the GAN that trains the generator includes: @

« random input Real images o Semee E%

 generator network, which transforms the random input into a S

data instance

- discriminator network, which classifies the generated data 3 o

= _®

» discriminator output E |— Generator | ——» Sample = Discriminator > E §

T -

 generator loss, which penalizes the generator for failing to s S
fool the discriminator

¢ I Backpropagation

Random input is:
* In its most basic form, a GAN takes random noise as its input
« Choose something that's easy to sample from, like a uniform distribution

=Q9: @ Intelligent Inclusive
\ Interaction Design (IFD) Lab

Generating Random Variables

Qi Computers are fundamentally deterministic

it is possible to define algorithms that generate sequences of numbers whose
ﬁ properties are very close to the properties of theoretical random numbers
sequences
e’ Methods: inverse transform method, rejection sampling, Metropolis-Hasting

algorithm and others

@ Intelligent Inclusive
Interaction Design (I°D) Lab

Generating Random Variables

inverse transform method

* way to generate a random variable that follows a given distribution by making a uniform random variable goes through a
well designed “transform function” (inverse CDF)

1.0 1

0.8 1

0.6

0.4+

0.24

0.0

lllustration of the inverse transform method. In blue: the uniform distribution over [0,1]. In orange: the standard
gaussian distribution. In grey: the mapping from the uniform to the gaussian distribution (inverse CDF).

Intelligent Inclusive
Interaction Design (I°D) Lab

Use the
Discriminator to

train Generator

Sample random noise.

Produce generator output from
sampled random noise.

Get discriminator "Real” or "Fake"
classification for generator output.

Calculate loss from discriminator
classification.

Backpropagate through both the
discriminator and generator to obtain
gradients.

Use gradients to change only the
generator weights.

» GENERATIVE »
NETWORK

Input random variable The generative network Output random variable The output of the
(drawn from a simple transforms the simple (should follow the targeted generative network
distribution, for random variable into distribution, after training once reshaped.
example uniform). a more complex one. the generative network).

finding the transform function is not as straightforward

G e n e rat I Ve * complex function naturally implies neural network modelling

m O d e | * model the transform function by a neural network
* input : simple N dimensional uniform random variable

a p p rOX| m atl O n * output : another N dimensional random variable that should follow

complex probability distribution corresponding to desired output
Intelligent Inclusive
__ Interaction Design (IFD) Lab

snxfta R sivere

@ Intelligent Inclusive
Interaction Design (I°D) Lab

AL
%

& R

> <

R 0

| r n n < !! L

. . S

a I I g N st Rsion sivera

« GANs must juggle two different kinds of training (generator and discriminator)
» GAN convergence is hard to identify

Alternate Training
» The discriminator trains for one or more epochs
» The generator trains for one or more epochs

» Repeat steps 1 and 2 to continue to train the generator and discriminator
networks

Convergence

 As the generator improves with training, the discriminator performance gets
worse

 This progression poses a problem
 Discriminator feedback gets less meaningful over time

Intelligent Inclusive
Interaction Design (I°D) Lab

Loss Functions

minimax loss

Ey[log(D(x))] + Ez[log(1 — D(G(2))]
D(x) : discriminator's estimate of the probability that real data instance x is real
E . : expected value over all real data instances
G(z): generator's output when given noise z
D(G(z)): discriminator's estimate of the probability that a fake instance is real

E ,: expected value over all generated fake instances G(z)

Generator can't directly affect the log(D(x))

« minimax loss function can cause the GAN to get stuck in the early stages

- modify the generator loss so that the generator tries to maximize log D(G(z)) Cont..

@ Intelligent Inclusive
Interaction Design (I°D) Lab

Loss Functions

Wasserstein loss (WGAN discriminator is actually called a "critic” instead of a "discriminator")

Critic Loss: D(x) — D(G(2))
« discriminator tries to maximize the difference between its output on real instances and its output on fake instances.

Generator Loss: D(G(z))
» generator tries to maximize the discriminator's output for its fake instances.

In these functions:

« D(x) is the critic's output for a real instance.
» G(2) is the generator's output when given noise z.
« D(G(2)) is the critic's output for a fake instance.

» The output of critic D does not have to be between 1 and 0.

Intelligent Inclusive
Interaction Design (I°D) Lab

st Ryswor izt

The approximation: GAN

Two networks can then be trained jointly (at the same
time) with opposite goals:

Bl Forward propagation (generation and classification) Il Backward propagation (adversarial training)
. . . . o o o o
* the goal of the generator is to fool the discriminator, so ©6 0 ©° © 45 0°
. o (-]
the generative neural network is trained to maximise > ° °8° > > °® 28% -
H H : GENERATIVE 2®e° 2% DISCRIMINATIVE o @°o %0
the final classification error (between true and ETNOBE) % o IO o %o oy
< | 00 L < | 99
generated data) & Fo®
* the goal Of the dlSCfImlnator Is to deteCt fa ke generated Input random The generative network The generated distribution The discriminative network The classification error
data, so the discriminative neural network is trained to variables. is trained to maximise the and the true distribution are s trained to minimise the is the basis metric for the
’ final classification error. not compared directly. final classification error. training of both networks.

minimise the final classification error

* These opposite goals and the implied notion of adversarial training

* From a game theory point of view, we can think of this setting as a minimax two-players game

5% ’o‘
"’l \“.
&)
=NIPS
‘g\‘_‘-m_’l‘,:'

@ Intelligent Inclusive
__ Interaction Design (IFD) Lab

st Risiron Fixemor

Direct method

Comparing two probability distributions based on samples

* Maximum Mean Discrepancy (MMD) approach

Forward transform of the

Mo tl-haldicd il o © * defines a distance between two probability
A generate data A o o O ° distributions
0O 0 o o
°©,° o) > 8 6o
5 GENERATIVE 2P %o 5o
o o © o NETWORK ° 4% o GMN optimize the network by
o © N <= <= 09 o . _
o 90 % o » generate some uniform inputs
» Backpropagation of >
th tchi 1 .
it A « make these inputs go through the network and collect the
generated outputs

Input random variables Generative network The generated distribution is compared ® Ccompare the true distribution and the generated one based
(drawn from a uniform). to be trained. to the true distribution and the “matching error”

is backpropagated to train the network. on the avallable samples

* use backpropagation to make one step of gradient descent
to lower the distance (for example MMD) between true and
generated distributions

The “indirect” training method

downstream task of GANs is a
discrimination task between true and
generated samples [Discriminator]

If the two distributions are far apart,
the discriminator will be able to
classify easily

bl

)

b)

) 0.5

Intuition for the adversarial method. The blue distribution is the true
one, the orange is the generated one. In grey, with corresponding y-axis
on the right, we displayed the probability to be true for the
discriminator if it chooses the class with the higher density in each
point (assuming “true” and “generated” data are in equal proportions).
The closer the two distributions are, the more often the discriminator is
wrong. When training, the goal is to “move the green area” (generated
distribution is too high) towards the red area (generated distribution is
too low).

ZER = . "
40 @ Intelligent Inclusive

Interaction Design (I°D) Lab

* Progressive GAN (Progressive Growing of GANs for Improved
Quality, Stability, and Variation)

 generator's first layers produce very low-
resolution images, and subsequent layers add
details

 Training is quicker
* Produce higher resolution images

Ty p e Of GA N S e Conditional GAN (Conditional Generative Adversarial Nets)

« train on a labeled data set and let you specify the
label for each generated instance

« a conditional MNIST GAN would let you specify
which digit the GAN should generate

* Instead of modeling the joint probability P(X, Y),
conditional GANs model the conditional
probability P(X | Y)

"4: ¢§$- oo ° °
“Q0: @ Intelligent Inclusive

_ Interaction Design (I°D) Lab

* Image-to-Image Translation (Image-to-Image Translation
with Conditional Adversarial Networks)

 take an image as input and map it to a generated
output image with different properties

- take sketches of objects and turn them into
photorealistic images of that object

* CycleGAN (Unpaired Image-to-Image Translation using Cycle-
Ty p € Of G A N S Consistent Adversarial Networks)

 transform images from one set into images that
could plausibly belong to another set

« training data for the CycleGAN is simply two sets
of images

 requires no labels or pairwise correspondences
between images

Intelligent Inclusive
Interaction Design (I°D) Lab

* Text-to-Image Synthesis (StackGAN: Text to Photo-realistic
Image Synthesis with Stacked Generative Adversarial Networks)

 take text as input and produce images that are
plausible and described by the text

 take sketches of objects and turn them into
photorealistic images of that object

Type of GANs

* Super-resolution (Photo-Realistic Single Image Super-
Resolution Using a Generative Adversarial Network)

* increase the resolution of images, adding detail
where necessary to fill in blurry areas

‘; 2 @ Intelligent Inclusive
== N\ Interaction Design (I°D) Lab

Part |l
Synthetic Data

‘:;$V¢;:=' i H H
“0): @ Intelligent Inclusive
a2 Interaction Design (I°D) Lab

Use-Case Example in a Typical Computer Vision Domain —
Object Detection in Advanced Manufacturing Setup

Playback Speed: 1.5X

MO O predicted each andjevery object
positiontwith respect tefmarker.

“ @ Intelligent Inclusive
== _’ Interaction Design (I’D) Lab

The Use-Cases of GANs
Virtual Environments

Style Transfer

Object Detection
3D Object Generation

Data Imbalance Correction

Image Augmentation

CycleGAN

G
X

S:mple styled maps

>[lEm-1lf -

Encoder

Encoder Generator

Transferred styled maps

|||»-+||

Discriminator

-

Target styled maps

Map

Fake/Real

Dy

Generator

Recovered simple styled maps

Discriminator

—> Fake/Real
— II_) Map

Dy

Figure. Overview of CycleGAN architecture: Translating from satellite image to map routes domain

@ Intelligent Inclusive
Interaction Design (I°D) Lab

smxfta Rswor Fivemen

Our goal is to learn mapping functions between two
domains X and Y given training samples {z;}}¥ , where
z; € X and {y; }jzl where y; € Y. We dEl‘IO'[B the data
distribution as & ~ pgata(x) and y ~ paata(y). As illus-
trated in Figure 3 (a), our model includes two mappings
G : X - Yand F : Y — X. In addition, we in-
troduce two adversarial discriminators Dy and Dy, where
Dy aims to distinguish between images {z} and translated
images {F'(y)}: in the same way, Dy aims to discriminate
between {y} and {G(z)}. Our objective contains two types
of terms: adversarial losses [16] for matching the distribu-
tion of generated images to the data distribution in the target
domain; and cycle consistency losses to prevent the learned
mappings ¢ and F' from contradicting each other.

Intelligent Inclusive
Interaction Design (I°D) Lab

(50)

Examples

Monet Z_> Photos

Zebras 2T Horses

horse —» zebra

Summer T Winter

RN
e g

Sy b

o

A,

tgraph

L1 ke |
Cezanne

g {, o)
DTN

’ ~
\ -

Cycle Consistency Loss

Objective

L(G,F,Dx,Dy)=Lgan(G, Dy, X,Y)
+ Loan(F, Dx .Y, X)
+ AMye(GF), 3)

(b), for each image = from domain X, the image translation
cycle should be able to bring x back to the original image,
ie.,r — G(r) — F(G(x)) ~ x. We call this forward cy-
cle consistency. Similarly, as illustrated in Figure 3 (c), for
each image y from domain Y, G and F' should also satisfy
backward cycle consistency: y — F(y) — G(F(y)) = y.
We incentivize this behavior using a cycle consistency loss:

Jf:c}fc (G, F) = Emmpm(a:)[”F(G(T)) — z||4]
+ Eywpdm(y)[”G(F(y)) - y”l}* (2)

In preliminary experiments, we also tried replacing the L1
norm in this loss with an adversarial loss between F'(G(x))
and z, and between G(F(y)) and y, but did not observe
improved performance.

@ Intelligent Inclusive

where A controls the relative importance of the two objec-
tives. We aim to solve:

cycle-consistency | ...

loss

I

I* F* ¢ ; -..) 11¢ ﬁ (F D D
7. arg min max . F.Dyx. Dy).
' G.F D (G, -)

Interaction Design (I°D) Lab

(4)
G
- v D
FW
X cycle-consistency
1T @ . loss

0: @)

Intelligent Inclusive Training Dataset
Interaction Design (I°D) Lab

3D Printed Specimen Replica (Class A)

Metal Specimen (Class B)

@) Intelligent Inclusive
Interaction Design (FD) Lab Results of Cyc]eG AN

Class A to Class B (Success)

Results of CycleGAN

Class A to Class B (Failures)

reference

._«,;;,""".";5‘%? S
‘ :

generated

s ! =
=) y 2
e ~f Lf \J
‘ ey
! [i
- \ ‘
\
[
]

contrast between the 3D specimen and the background (left) and in environments with high
light intensities causing the objects to have a shiny surface while capturing images, due to
which the model is not able replicate the expected texture and color for the generated object
even though the generated shape matches (right).

Intelligent Inclusive
Interaction Design (IFD) Lab

,‘,_ @ Intelligent Inclusive
=% _/ Interaction Design (FD) Lab

Thank You.

. ’ - 1 ¥
ﬁ Collins Aerospace MDA SIEMENS
i faurecia {—\‘\\(s
I 4 facebook

By Gyanig Kumar
Research Assistant, 13D Lab, IISc

	Slide 1: Generative AI
	Slide 2: Use-Case Example in a Typical Computer Vision Domain – Object Detection in Advanced Manufacturing Setup
	Slide 3: Part I Introduction to GAN
	Slide 4: Introduction
	Slide 5: Background: What is Generative Model?
	Slide 7: Overview of GAN Structure
	Slide 8
	Slide 9: Discriminator
	Slide 10: Generator
	Slide 11: Generating Random Variables
	Slide 12: Generating Random Variables
	Slide 13: Use the Discriminator to train Generator
	Slide 14: Generative model approximation
	Slide 15: Training GAN
	Slide 16: Loss Functions
	Slide 17: Loss Functions
	Slide 18: The approximation: GAN
	Slide 19: Direct method
	Slide 20: The “indirect” training method
	Slide 21: Type of GANs
	Slide 22: Type of GANs
	Slide 23: Type of GANs
	Slide 24: Part II Synthetic Data
	Slide 25: Use-Case Example in a Typical Computer Vision Domain – Object Detection in Advanced Manufacturing Setup
	Slide 26: Generation of Synthetic Data
	Slide 27: CycleGAN
	Slide 28: Examples
	Slide 29: Cycle Consistency Loss
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Thank You.

