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Part I
Introduction to GAN



Introduction
• Generative adversarial networks (GANs) or Generative AI 

are an exciting recent innovation in machine learning.

• GANs are generative models:

• Create new data instances that resemble your training 
data.

• Achieve this level of realism by pairing a generator and 
with a discriminator

Fig. Images generated by a GAN (Source: NVIDIA)

https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf


Background: 
What is 

Generative 
Model?

• Supervised vs. Unsupervised Learning

• Examples of supervised learning problems 
include classification and regression, and 
examples of supervised learning algorithms 
include logistic regression and random forest.

• Examples of unsupervised learning 
problems include clustering and 
generative modeling, and examples of 
unsupervised learning algorithms are K-
means and Generative Adversarial 
Networks.

• More formally, given a set of data 
instances X and a set of labels Y:

• Generative models capture the joint 
probability p(X, Y), or just p(X) if there 
are no labels.

• Discriminative models capture the 
conditional probability p(Y | X).

Generative Models Are Hard



Overview of GAN 
Structure



• [training] drives the discriminator to attempt to learn to correctly classify samples as real or fake.

• Simultaneously, the generator attempts to fool the classifier into believing its samples are real.

• At convergence, the generator’s samples are indistinguishable from real data, and the discriminator outputs 
1/2 everywhere.

• The discriminator may then be discarded.



Discriminator

• Discriminator's training data comes from two sources:

• Real data instances, such as real pictures of people. 

• Fake data instances created by the generator. 

• During discriminator training:

• The discriminator classifies both real data and fake data from 
the generator.

• The discriminator loss penalizes the discriminator for 
misclassifying a real instance as fake or a fake instance as 
real.

• The discriminator updates its weights 
through backpropagation from the discriminator loss through 
the discriminator network.

Discriminator can use any network architecture appropriate to the type of data it's classifying

https://developers.google.com/machine-learning/glossary/#b


Generator

The portion of the GAN that trains the generator includes:

• random input

• generator network, which transforms the random input into a 
data instance

• discriminator network, which classifies the generated data

• discriminator output

• generator loss, which penalizes the generator for failing to 
fool the discriminator

Random input is:

• In its most basic form, a GAN takes random noise as its input

• Choose something that's easy to sample from, like a uniform distribution



Generating Random Variables

Computers are fundamentally deterministic

it is possible to define algorithms that generate sequences of numbers whose 
properties are very close to the properties of theoretical random numbers 
sequences

Methods: inverse transform method, rejection sampling, Metropolis-Hasting 
algorithm and others



Generating Random Variables

inverse transform method

• way to generate a random variable that follows a given distribution by making a uniform random variable goes through a 
well designed “transform function” (inverse CDF)

Illustration of the inverse transform method. In blue: the uniform distribution over [0,1]. In orange: the standard 
gaussian distribution. In grey: the mapping from the uniform to the gaussian distribution (inverse CDF).



Use the 
Discriminator to 
train Generator

• Sample random noise.

• Produce generator output from 
sampled random noise.

• Get discriminator "Real" or "Fake" 
classification for generator output.

• Calculate loss from discriminator 
classification.

• Backpropagate through both the 
discriminator and generator to obtain 
gradients.

• Use gradients to change only the 
generator weights.



Generative 
model 
approximation

• finding the transform function is not as straightforward

• complex function naturally implies neural network modelling

• model the transform function by a neural network

• input : simple N dimensional uniform random variable

• output : another N dimensional random variable that should follow
complex probability distribution corresponding to desired output



Training GAN

• GANs must juggle two different kinds of training (generator and discriminator)

• GAN convergence is hard to identify

Alternate Training

• The discriminator trains for one or more epochs

• The generator trains for one or more epochs

• Repeat steps 1 and 2 to continue to train the generator and discriminator 
networks

Convergence

• As the generator improves with training, the discriminator performance gets 
worse

• This progression poses a problem

• Discriminator feedback gets less meaningful over time



Loss Functions

minimax loss

𝐸𝑥[log(𝐷(𝑥))] + 𝐸𝑧[log(1 − 𝐷(𝐺(𝑧))]

𝑫(𝒙) : discriminator's estimate of the probability that real data instance x is real

𝑬𝒙 : expected value over all real data instances

𝑮(𝒛): generator's output when given noise z

𝑫(𝑮(𝒛)): discriminator's estimate of the probability that a fake instance is real

𝑬𝒛: expected value over all generated fake instances G(z)

Cont..

Generator can't directly affect the log(D(x))

• minimax loss function can cause the GAN to get stuck in the early stages

• modify the generator loss so that the generator tries to maximize log D(G(z))



Loss Functions

Wasserstein loss (WGAN discriminator is actually called a "critic" instead of a "discriminator")

𝐂𝐫𝐢𝐭𝐢𝐜 𝐋𝐨𝐬𝐬:  𝐷(𝑥)  −  𝐷(𝐺(𝑧))

• discriminator tries to maximize the difference between its output on real instances and its output on fake instances.

Generator Loss: D(G(z))

• generator tries to maximize the discriminator's output for its fake instances.

In these functions:

• D(x) is the critic's output for a real instance.

• G(z) is the generator's output when given noise z.

• D(G(z)) is the critic's output for a fake instance.

• The output of critic D does not have to be between 1 and 0.



The approximation: GAN

Two networks can then be trained jointly (at the same 
time) with opposite goals:

• the goal of the generator is to fool the discriminator, so 
the generative neural network is trained to maximise 
the final classification error (between true and 
generated data)

• the goal of the discriminator is to detect fake generated 
data, so the discriminative neural network is trained to 
minimise the final classification error

• These opposite goals and the implied notion of adversarial training

• From a game theory point of view, we can think of this setting as a minimax two-players game



Direct method

Comparing two probability distributions based on samples

• Maximum Mean Discrepancy (MMD) approach

• defines a distance between two probability 
distributions

GMN optimize the network by

• generate some uniform inputs

• make these inputs go through the network and collect the 
generated outputs

• compare the true distribution and the generated one based 
on the available samples 

• use backpropagation to make one step of gradient descent 
to lower the distance (for example MMD) between true and 
generated distributions



The “indirect” training method

downstream task of GANs is a 
discrimination task between true and 
generated samples [Discriminator]

If the two distributions are far apart, 
the discriminator will be able to 
classify easily

Intuition for the adversarial method. The blue distribution is the true 
one, the orange is the generated one. In grey, with corresponding y-axis 
on the right, we displayed the probability to be true for the 
discriminator if it chooses the class with the higher density in each 
point (assuming “true” and “generated” data are in equal proportions). 
The closer the two distributions are, the more often the discriminator is 
wrong. When training, the goal is to “move the green area” (generated 
distribution is too high) towards the red area (generated distribution is 
too low).



Type of GANs

• Progressive GAN (Progressive Growing of GANs for Improved 

Quality, Stability, and Variation)

• generator's first layers produce very low-
resolution images, and subsequent layers add 
details

• Training is quicker

• Produce higher resolution images

• Conditional GAN (Conditional Generative Adversarial Nets)

• train on a labeled data set and let you specify the 
label for each generated instance

• a conditional MNIST GAN would let you specify 
which digit the GAN should generate

• Instead of modeling the joint probability P(X, Y), 
conditional GANs model the conditional 
probability P(X | Y)



Type of GANs

• Image-to-Image Translation (Image-to-Image Translation 

with Conditional Adversarial Networks)

• take an image as input and map it to a generated 
output image with different properties

• take sketches of objects and turn them into 
photorealistic images of that object

• CycleGAN (Unpaired Image-to-Image Translation using Cycle-

Consistent Adversarial Networks)

• transform images from one set into images that 
could plausibly belong to another set

• training data for the CycleGAN is simply two sets 
of images 

• requires no labels or pairwise correspondences 
between images



Type of GANs

• Text-to-Image Synthesis (StackGAN: Text to Photo-realistic 

Image Synthesis with Stacked Generative Adversarial Networks)

• take text as input and produce images that are 
plausible and described by the text

• take sketches of objects and turn them into 
photorealistic images of that object

• Super-resolution (Photo-Realistic Single Image Super-

Resolution Using a Generative Adversarial Network)

• increase the resolution of images, adding detail 
where necessary to fill in blurry areas



Part II
Synthetic Data



Use-Case Example in a Typical Computer Vision Domain – 
Object Detection in Advanced Manufacturing Setup



Generation of Synthetic Data 

The Use-Cases of GANs

▪ Virtual Environments

▪ Style Transfer

▪ Object Detection

▪ 3D Object Generation

▪ Data Imbalance Correction

▪ Image Augmentation



CycleGAN

Figure. Overview of CycleGAN architecture: Translating from satellite image to map routes domain
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Examples



Cycle Consistency Loss

Objective



Training Dataset

3D Printed Specimen Replica (Class A) Metal Specimen (Class B)



Results of CycleGAN

Class A to Class B (Success)

reference generated



Results of CycleGAN

Class A to Class B (Failures)

The model seems to not work properly with white background where there is not sufficient 

contrast  between the 3D specimen and the background (left) and in environments with high 

light intensities causing the objects to have a shiny surface while capturing images, due to 

which the model is not able replicate the expected texture and color for the generated object 

even though the generated shape matches (right).

reference generated



Thank You.

By Gyanig Kumar

Research Assistant, I3D Lab, IISc
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