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What is POMDP

Reference : https://www.cs.cmu.edu/~ggordon/780-fall07/lectures/POMDP_lecture.pdf

• A partially observable Markov decision process(POMDP) is an 
MDP with state uncertainty – meaning we cannot know the true 
state, only a belief about the true state using observations.

• POMDP is a problem formulation and not an algorithm.
• We use extend solvers like Monte-Carlo Tree Search(MCTS) Path 

planning algorithms with POMDP to implement Partially 
Observable Monte-Carlo Planning(POMCP)



What is POMDP

Reference : https://www.cs.cmu.edu/~ggordon/780-fall07/lectures/POMDP_lecture.pdf



How Do POMDPs Work ?

Reference : https://www.cs.cmu.edu/~ggordon/780-fall07/lectures/POMDP_lecture.pdf

POMDP is defined by : States, Action, Transition Model, Observation 
Model, Rewards, Discount Factor



Human Intent Understanding

• The task is to understand how does a human input (like keyboard 
control) affect the robot’s behaviors.

• To be able use human input, we need a dynamic understanding of 
our state space, which provides us context on human input and 
control over robot movements

• We explore this task using Partially Observed Markov Decision 
Process



Methodologies

Point based value iteration (PBVI)

• K. Hsiao, L. P. Kaelbling and T. Lozano-Perez, "Grasping POMDPs"



Methodologies

Monte Carlo Tree Search

• Y. Xiao, S. Katt, A. ten Pas, S. Chen, and C. Amato, “Online planning for target object search in clutter 
under partial observability,”



Our Experiment

• State : Position of robotic grasper in x, y, and 
z-axes.

• Observation : User input guiding the robot.

• Action : Movement of the robot in the 3 axes.

• Goals : Objects at the table with varying 
heights. 

• Objective : Enable the robotic grasper to 
reach the top of a selected object.

Mujuco Simulator



Belief Update

Transition Probabilities: state (s to s') under 
action (a) at time (t)

Reward Function: Expected reward for action

Initial State Distribution: Uniform dist. at t=0

History: Sequence of actions and observations 

Policy: Maps history to action probabilities dist.

Belief: Probability distribution over states given 
history



Metrics

Belief Distribution
• The core state estimate POMDP lives on.
•  A categorical probability vector b = b1,b2,…,b∥S∥ where bₖ = P(sₖ | history)

• Encodes the agent’s current belief about every hidden state



Metrics

Belief Entropy
• How much uncertainty is left in the robot’s internal belief.
• Shannon entropy of the current belief distribution bt

• Formula :

• Measures the spread of probability mass.



Metrics

Cross-Entropy
• Is the belief putting probability mass on the right state?

• General form :

• Penalises beliefs that assign low probability to the true state

• Captures cases where entropy is low but concentrated on the wrong state.



Results

Hyper-parameters
 Discount factor : 0.7

 Max depth : 100

 Goal threshold : 2cm

 Default initial goal : Bowl

 Number of objects : 3

 Temperature : 0.01



Simulation Results



Conclusion 

• Successfully implemented POMDP in a simulator.
• Verified the belief distribution aligns with our goals.
• Incorporated human input to enhance observation updates.



Future Work 

1.Test with solvers other than POMCP.
2.Evaluate belief updates using human input (consistent or legibility-based) 

and trajectory similarity to enhance human-robot interaction.
3.Expand the number of objects and vary the environment setups.



Questions?
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